Barbiturate reduction of calcium-dependent action potentials: correlation with anesthetic action.

نویسندگان

  • E J Heyer
  • R L Macdonald
چکیده

Calcium-dependent action potentials were recorded from mouse spinal cord neurons in primary dissociated cell culture following addition of the potassium channel blockers tetraethylammonium ion and 3-aminopyridine. The pharmacologically active barbiturates, pentobarbital and phenobarbital, but not the pharmacologically inactive barbiturate, barbituric acid, produced reversible, dose-dependent reduction of action potential duration at sedative-hypnotic and anesthetic concentrations. Pentobarbital reduced action potential duration at concentrations from 25 to 600 microM (50% reduction at 170 microM) while phenobarbital reduced action potential duration at concentrations from 100 to 5000 microM (50% reduction at 900 microM). The barbiturate concentrations which reduced calcium-dependent action potential duration in this study correlate with reduction of neurotransmitter release from other neuronal preparations and with reduction of calcium uptake by synaptosomes. The results suggest that barbiturates may produce anesthesia in part by reduction of presynaptic calcium entry and consequent reduction of neurotransmitter release in addition to postsynaptic increase of membrane chloride ion conductance. Barbiturate anticonvulsant actions are probably due to postsynaptic augmentation of GABA-mediated inhibition and depression of excitatory synaptic transmission. The major difference between anticonvulsant (phenobarbital) and anesthetic (pentobarbital) barbiturates was the dose-dependency of these actions. Phenobarbital produced postsynaptic modulation of neurotransmitter responses at low concentrations and decreased calcium-dependent action potential duration and increased chloride ion conductance at high concentrations. In contrast, pentobarbital produced all actions at low concentrations. Thus for phenobarbital there would be a large therapeutic index for anticonvulsant activity compared to anesthetic activity but for pentobarbital there would be a small therapeutic index.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Barbiturate enhancement of GABA-mediated inhibition and activation of chloride ion conductance: correlation with anticonvulsant and anesthetic actions.

The anesthetic-sedative barbiturate pentobarbital (PB) and the anticonvulsant barbiturate phenobarbital (PhB) were applied to mammalian spinal cord neurons in primary dissociated cell culture to assess their effects on: (1) postsynaptic GABA-responses; (2) paroxysmal activity produced by the convulsant bicuculline; (3) resting membrane properties; and (4) spontaneous neuronal activity. The resu...

متن کامل

Comparison of the effect of quasitrapezoidal and rectangular pulses on bio- electrical activity, calcium spike properties and afterhyperpolarization potentials of Fl cells of Helix aspersa using intracellular recording

  While the effect of changes of stimulus waveform (quasitrapezoidal and rectangular current pulses) on nerve activation is clear, but there is no evidence on the effect of quasitrapezoidal pulses on ionic currents of cellular membrane. In the present study, the effect of depolarizing quasi-trapezoidal current pulses, in comparison with that of depolarizing rectangular current pulses, on firing...

متن کامل

The Journal of Neurophysiology Effect of Common Anesthetics on Dendritic Properties in Layer 5 Neocortical Pyramidal Neurons

Understanding the impact of active dendritic properties on network activity in vivo has so far been restricted to studies in anesthetized animals. However, to date no study has been made to determine the direct effect of the anesthetics themselves on dendritic properties. Here, we investigated the effects of three types of anesthetics commonly used for animal experiments (urethane, pentobarbita...

متن کامل

The effect of lead (Pb2+) on electrophysiological properties of calcium currents in F77 neuron in Helix aspersa

Ion channels are responsible for control of cell function in excitable tissues such as heart and brain and also in organs and tissues traditionally thought to be non- excitable including liver and epithelium. In the present research, the effect of lead (Pb2+) on Ca2+ -dependent action potential and currents was studied in F77 neuronal soma membrane of Helix aspersa. For this purpose, action pot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 236 1  شماره 

صفحات  -

تاریخ انتشار 1982